其首先是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束(图A);另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的相位和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。
记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光全息术栅,在相干激光照射下,一张线性记录的正弦全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。
全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。
激光投影显示技术(LDT),也称激光投影技术或者激光显示技术,它是以红、绿、蓝(RGB)三基色激光为光源的显示技术,可以**真实地再现客观世界丰富、艳丽的色彩,提供更具震撼的表现力。 从色度学角度来看,激光显示的色域覆盖率可以达到人眼所能识别色彩空间的90%以上,是传统显示色域覆盖率的两倍以上,彻底突破**代显示技术色域空间的不足,实现人类有史以来**完美色彩还原,使人们通过显示终端看到**真实、**绚丽的世界。
技术背景
全息技术可细分为光全息技术、数字全息技术、计算全息技术、微波全息技术、反射全息技术、声全息技术等等。应用在显示、测量、加密、识别等各个领域,我们常见的传统全息技术即为光全息技术。
全息技术能记录物体光波振幅和相位的全部信息,并能把它再现出来。因此,应用全息技术可以获得与原物完全相同的立体像(从不同角度观察全息图的再现虚像,可以看到物体的不同侧面,有视察效应和景深感)。
作为光波信息的记录者,有无全息图是判断我们所接触的3D技术是否为全息技术的重要标准。
文章来源地址: http://bgwj.m.chanpin818.com/bgwjxmhz/deta_4195976.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。